If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-2y-18=0
a = 1; b = -2; c = -18;
Δ = b2-4ac
Δ = -22-4·1·(-18)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{19}}{2*1}=\frac{2-2\sqrt{19}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{19}}{2*1}=\frac{2+2\sqrt{19}}{2} $
| -24x2-5x+1=0 | | 24x+18=162 | | 24x+18=163 | | 5t=36 | | x²-121=0 | | 2x²-11x+12=0 | | 2-8x=1-5x | | 9=4.2+x | | 5/4=-19/8+3/5x | | -9x-7=3x-6x | | X^2=y^2-2y+1 | | 2x+1/4=3x+2/2 | | 4x+5x=3+7x | | -4-9x=-9x-3x | | 12x^2=−9x | | 11/4=-23/8+3/5x | | 3n^2-24=21n | | −5(p+3/5=-4 | | 3(x-4)=2×+3 | | 1/3(n=15)=-2 | | 20=-5(4x+2)+21x= | | 12=15(z−1/5 | | 2x/5+5=5x/2-6/5+2 | | 35x2+26-48=0 | | 0.3x+0.1=0.6x-1.4 | | 5(x-3)=4x+2 | | 5x+2/2-2=2x+8/3 | | 3(x+1)=2x-5 | | 4x+38°28+2x-20°46=180 | | 23w=16 | | 5x+24=10x-61 | | 0=-16(t^2-8t-7) |